skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hartman, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Virus-like particles (VLPs) are promising scaffolds for biomaterials as well as diagnostic and therapeutic applications. However, there are some key challenges to be solved, such as the ability to engineer alternate sizes for varied use cases. To this end, we created a library of MS2 VLP variants at two key residues in the coat protein which have been implicated as important to controlling VLP size and geometry. By adapting a method for systematic mutagenesis coupled with size-based selections and high-throughput sequencing as a readout, we developed a quantitative assessment of two residues in MS2 coat protein that govern the size shift in MS2 VLPs. We then applied the strategy to the equivalent residues in Qβ VLPs, an MS2 homolog, and demonstrate that the analogous pair of residues are also able to impact Qβ VLP size and shape. These results underscore the power of fitness landscapes in identifying critical features for assembly. 
    more » « less